Type some TeX code:
You typed:
$${}$$
$\hbar$ $\imath$ $\jmath$ $\ell$ $\Re$ $\Im$ $\emptyset$ $\infty$ $\partial$ $\nabla$ $\triangle$ $\forall$ $\exists$ $\nexists$ $\top$ $\bot$ $\sum$ $\prod$ $\int$ $\oint$ $\bigcap$ $\bigcup$ $\biguplus$ $\bigoplus$ $\bigotimes$ $\bigodot$ $\mathbf{R}$ $\mathcal{R}$ $\mathbb{R}$ $\mathrm{R}$ $^{sup}$ $\widetilde{abc}$ $\underbrace{abc}$ $\widehat{abc}$ $\underline{abc}$ $\overrightarrow{abc}$ $\sqrt{abc}$ $\sqrt[n]{abc}$ $\overline{abc}$ $\overbrace{abc}$ $\frac{abc}{xyz}$ $_{sub}$ $\hat{a}$ $\check{a}$ $\breve{a}$ $\acute{a}$ $\grave{a}$ $\tilde{a}$ $\bar{a}$ $\vec{a}$ $\dot{a}$ $\ddot{a}$ $a^{\prime}$
$\alpha$ $\beta$ $\gamma$ $\delta$ $\epsilon$ $\varepsilon$ $\zeta$ $\eta$ $\theta$ $\vartheta$ $\iota$ $\kappa$ $\lambda$ $\mu$ $\nu$ $\xi$ $o$ $\pi$ $\varpi$ $\rho$ $\varrho$ $\sigma$ $\varsigma$ $\tau$ $\upsilon$ $\phi$ $\varphi$ $\chi$ $\psi$ $\omega$ $\Gamma$ $\Delta$ $\Theta$ $\Lambda$ $\Xi$ $\Pi$ $\Sigma$ $\Upsilon$ $\Phi$ $\Psi$ $\Omega$
$\{$ $\big\{$ $\Big\{$ $\bigg\{$ $\Bigg\{$ $\}$ $\left[\right]$ $|$ $\|$ $\cdots$ $\subset$ $\supset$ $\subseteq$ $\supseteq$ $\in$ $\ni$ $\sim$ $\simeq$ $\approx$ $\cong$ $\vdots$ $\propto$ $\pm$ $\mp$ $\times$ $\div$ $\ast$ $\star$ $\circ$ $\bullet$ $\cdot$ $\ddots$ $\cap$ $\cup$ $\uplus$ $\bigtriangleup$ $\bigtriangledown$ $\oplus$ $\otimes$ $\odot$ $\neq$ $\dagger$ $\ngeqslant$ $\leqslant$ $\geqslant$ $\ll$ $\gg$ $\lll$ $\ggg$ $\lesssim$ $\gtrsim$ $\nless$ $\ngtr$ $\nleqslant$
$\cos$ $\sin$ $\tan$ $\cosh$ $\sinh$ $\tanh$ $\inf$ $\sup$ $\cot$ $\min$ $\max$ $\coth$ $\exp$ $\ln$ $\log$ $\arg$ $\ker$ $\sec$ $\gcd$ $\dim$ $\det$ $\hom$ $\csc$ $\lg$ $\arccos$ $\arcsin$ $\arctan$ $\lim$ $\liminf$ $\limsup$
$\begin{aligned} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{aligned}$ $\left( \sum_{k=1}^n a_k b_k \right)^2 \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)$ $\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \end{vmatrix}$ $\frac{1}{\Bigl(\sqrt{\phi \sqrt{5}}-\phi\Bigr) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } }$ $1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}.$ $\begin{aligned} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{aligned}$ $$